
Unveiling Optical Properties
in Underwater Images

Yael Bekerman, Shai Avidan and Tali Treibitz

Abstract—The appearance of underwater scenes is highly governed by the optical properties of the water (attenuation and scattering).
However, most research effort in physics-based underwater image reconstruction methods is placed on devising image priors for
estimating scene transmission, and less on estimating the optical properties. This limits the quality of the results. This work focuses on
robust estimation of the water properties. First, as opposed to previous methods that used fixed values for attenuation, we estimate it
from the color distribution in the image. Second, we estimate the veiling-light color from objects in the scene, contrary to looking at
background pixels. We conduct an extensive qualitative and quantitative evaluation of our method vs. most recent methods on several
datasets. As our estimation is more robust our method provides superior results including on challenging scenes.

Index Terms—Computational Photography, Image Restoration, Image Color Analysis
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1 INTRODUCTION

PHYSICS-based single underwater image recovery is an
ill-posed problem that is typically separated into two

parts: estimating the water properties and using a prior to
estimate transmission. Once these are estimated the scene
is recovered. While there is substantial work about suitable
priors, estimating water properties was relatively neglected.
Nevertheless, these parameters have critical influence on
the results. Here, we concentrate on robust estimation of
these properties and show that this greatly improves results,
especially for distant objects.

The water properties that control the scene appearance
are attenuation and scattering. Attenuation coefficients con-
trol the exponential decay of light as a function of the
traveled distance. The coefficients heavily depend on the
wavelength [1]. However, so far, in single image methods
this dependency has not been dealt with robustly. In haze
this dependency is very small and can be ignored. Many
underwater recovery methods stem from dehazing meth-
ods and thus often continue with this assumption. Others,
that take into account the color dependency, use preset
value(s) based on oceanographic measurements. However,
it was recently shown [1] that using the oceanographic
measurements per wavelength in wide-band color channels
is erroneous as it does not take into account camera spectral
sensitivity, etc. Therefore, here we present the first attempt
to recover the coefficients directly from the image, without
using preset values.

Scattering of light in the medium between the object
and the camera introduces an additive component to the
image. The further the object, there is more intervening
medium and thus the scattering increases. The saturation
value of this additive component is termed the veiling-light
and it occurs when there are no objects in the line-of-sight
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Fig. 1: [Left] Input underwater images. [Right] Results of our
method. Note the recovery of very far objects, zoomed-in in
the inserts.

(LOS). The veiling-light value is assumed constant across
the scene and is usually estimated from visible areas in the
image that contain no objects. This is not robust enough as
often it is difficult to reliably find these areas due to low
visibility. In addition, although the veiling-light is treated as
a single global value in each scene, in reality it often exhibits
non-uniformities. Here we still assume uniform illumination
but do not estimate the veiling-light merely based on pixel
appearance. Instead, we aim to estimate a robust value that
fits the image formation model to the scene.

Our key contribution is a method for estimating attenu-
ation ratios and veiling light directly from the image. Once
these ratios are estimated, we resort to a standard image
dehazing algorithm to recover the full physical model of
the scene that includes the transmission map, depth map,
veiling light, and the clear image. Fig. 1 shows two examples
underwater scenes and the results of our proposed method.

Recovering nearby objects in underwater images is rela-



tively easy and often a simple contrast stretch does the job.
The problem becomes more challenging when the objects
are farther away. This is where differences between methods
are more pronounced. Therefore we evaluate our method on
a recently released dataset that contains scenes with objects
at the visibility limits. We show that our method provides
superior reconstructions even in those challenging scenes,
especially on the farthest objects. In addition, we provide
an extensive comparison of very recent methods on this
challenging dataset.

2 RELATED WORK

We focus on reviewing most relevant underwater single
image methods. We divide the relevant work into two
categories. The first, image enhancement methods, that aim
to enhance the appearance of the image without using any
physical models. These methods do not reconstruct trans-
mission maps. The second, physics-based image restoration
methods, that aim to recover true color and transmission
maps. As solving the image formation model is an under-
constrained problem, these methods rely on image priors.
The reader is referred to [2], [3], [4] for recent very com-
prehensive reviews of the growing body of research on this
topic.
Image Enhancement. Image enhancement methods concen-
trate on increasing the contrast and correcting for color bias.
They are mainly based on pixel intensity redistribution and
expanding the dynamic range of the image histogram using
one or several color models (such as RGB or HSV) [5], [6].
The most popular contrast enhancement methods used for
underwater images are histogram equalization, contrast lim-
ited adaptive histogram equalization (CLAHE), gamma cor-
rection, white balancing and gray-world assumption. The
most effective methods are fusion of these techniques [7],
[8], [9], [10], [11].

Several deep learning methods were suggested for im-
age enhancement, based either on end-to-end CNNs or
on GANs. The training data used for the CNNs is either
synthetic [12], [13] or based on results obtained from other
underwater image enhancement methods [14], [15]. Both
options for training are biased. GANs [16], [17], [18] have the
advantage of not requiring pair-wise input-output training
data that is very difficult to obtain. Therefore, they are
used to transform the underwater images to look like in-air
images using unorganized datasets of underwater images
and in-air images.
Physics-Based Image Restoration. The dark channel prior
(DCP) [19] assumes that most patches in natural images
contain a very low intensity pixel in at least one color
channel. Several methods used this prior or variants for un-
derwater image enhancement [20], [21], [22], [23]. This prior
was extensively verified for on-land images, but has limited
applicability underwater, where ranges are much smaller
and bright objects might occupy large portions of the field-
of-view. Several underwater variants of it were suggested.
UDCP [24], [25] omits the red channel, whereas the red
channel prior [26] inverts it. Peng et al. [27] proposed a
generalized dark channel prior (GDCP) based on the depth-
dependent color by calculating the difference between the
observed intensity and the background light.

Some methods use the per-patch difference between the
red channel and the maximum between the blue and the
green as a proxy for distance, termed the maximum inten-
sity prior (MIP) by Carlevaris-Bianco et al. [28]. Li et al. [29]
estimated the transmission based on it and then adjusted
the contrast and brightness with histogram distribution.
Song et al. [30] suggested the underwater light attenuation
prior (ULAP) that assumes the object distance is linearly
related to the difference between the red channel and the
maximum blue-green. The blurriness prior [31] leverages
the fact that images become blurrier with distance. Peng and
Cosman [32] combined this prior with MIP and suggested
the image blurring and light absorption (IBLA) prior.

The haze-lines prior (HL) [33] is based on the obser-
vation that the color intensity in natural images can be
clustered to a small number of colors, and that under haze
each cluster in the natural image becomes a line. Berman
et al. [34] showed that the underwater image problem can
be reduced to single image dehazing problem if the ratios
of the attenuation coefficients are known. Based on the HL
prior, Wang et al. [35] suggested the attenuation-curve prior,
showing that color clusters in the natural image RGB plane
become curves in the corresponding underwater RGB plane.

Deep networks that aim at physics-based restoration
output an estimated transmission map, that is then used for
restoration, rather than the restored image itself. For training
they require datasets with pairs consisting of an underwater
image and its ground-truth transmission. Such real-world
datasets do not exist and therefore these methods rely on
synthetic data for training [36], [37], [38], [39], [40]. This is
problematic as the synthetic data usually does not encap-
sulate the entire complexity of the underwater realm. Li et
al. [41] (waterGAN) trained their network using synthetic
RGB-D underwater images generated using a GAN.
Water properties estimation. Physics-based method require
estimation of the global veiling-light value and the wa-
ter attenuation properties. Veiling-light is estimated as the
brightest point (most methods based on DCP), using the
farthest point [30], [32], or by finding a background texture-
less area that does not contain objects [25], [34]. Lu et al. [6]
used the color lines prior [42] to estimate the veiling light
assuming fixed attenuation (it cannot be done without this
assumption). As opposed to these, our algorithm does not
rely on background pixels for veiling-light estimation and
finds a value that best fits the scene.

Estimating color-dependent attenuation is even more
challenging. Some methods do not estimate the coefficients
directly but perform some kind of a color-balance between
the transmission channels [23]. Most methods assume preset
fixed coefficients (usually ocean type I) [6], [22], [30], [32],
[35]. The first attempt to estimate the coefficients was done
by Berman et al. [34] who estimated two global attenuation
coefficients ratios by iterating over ten water types defined
by Jerlov [43]. The oceanographic measurements provide
attenuation coefficients per wavelength. Previous methods
that use preset values usually pick the measurement for each
color channel from the peak wavelength of the camera sen-
sitivity. It was shown in [44] that this is erroneous and that
the color attenuation experienced by the wide-band color
channels has different values that depend on the camera, etc.
This is why it is important to estimate attenuation without



Fig. 2: Image formation model of a horizontal LOS. The
sun’s illumination is attenuated while it vertically propa-
gates to the scene. Then, light reflected from the object is
attenuated on its way to the sensor. Scattering from particles
along the LOS contributes an additive component to the
image intensity.

using preset types, as we firstly do here.
Revised underwater image formation model. It was shown
recently [1], [44] that the image formation model used
for underwater images in all the above methods leads to
reconstruction errors as wavelength-dependent formulation
cannot be directly transferred to a wide-band color space.
The revised model has more parameters that when esti-
mated using a known range-map were shown to result in
superior reconstruction errors [45]. A single image method
using the revised model has not been suggested yet as it has
more parameters.

3 BACKGROUND

3.1 Underwater Image Formation Model
The common underwater image formation [46] describes the
underwater image intensity Ic(x) at each pixel x and color
channel c ∈ {R,G,B} as follows

Ic(x) = tc(x)Jc(x) + Vc(1− tc(x)) . (1)

where Jc is the object radiance, Vc is the veiling light, and tc
is the transmission coefficient. Vectors are denoted in bold.

The image signal Ic is an additive combination of the
direct signal Jc and the veiling-light Vc which carries no
information about the scene and therefore degrades the
image. The object radiance Jc that we wish to restore is
attenuated by the transmission tc. The global veiling-light
Vc is the image signal in areas that contain no objects. Note
that since this is a physical model, the input image should
be linear.

Assuming the water medium is homogeneous, the trans-
mission is set by Bouguer’s exponential law of attenuation,
which is also known as the Beer-Lambert law [46]:

tc(x) = e−βcz(x) , (2)

where βc is the water attenuation coefficient and it is color
dependent. Here z(x) is the distance along the line-of-sight
(LOS) from the camera sensor to the scene at pixel x (see
Fig. 2). The ratios between the attenuation coefficients are
defined as:

βBR =
βB
βR

, βBG =
βB
βG

(3)

Similarly to horizontal attenuation described in Eq. (2),
the vertical propagation of the light from the sea surface
to the objects also induces attenuation that depends on the
wavelength and the traveled distance. This is illustrated
in Fig. 2. The incident illumination at the surface E0 is
attenuated with depthD, such that the incident illumination
on the LOS is Ec = E0e

−βcD . This results in an illumination
color at depth that is different than the sun’s illumination at
the surface.

The image formation model in Eq. (1) assumes a hori-
zontal LOS and thatEc is uniform in intensity and spectrum
across the scene and the LOS, as the objects are located in ap-
proximately the same water depth. Thus, this illumination
change can be viewed as a global color-cast in the scene.

The model in Eq. (1) is borrowed from haze and takes
only horizontal effects into account. For our analysis we
wish to separate the horizontal and vertical effects and
therefore rewrite the equation to be

Ic(x) = Ectc(x)J̃c(x) + Ec(1− tc(x)) · Ṽc . (4)

So far methods that did not use the form of Eq. (4) actually
estimated EcJc, and then compensated for E at the end of
their algorithm pipeline by common global white-balance
methods. This is physically true as E is a global effect.

However, we found that this cast has an effect on the
performance of prior-based algorithms as they are based
on natural images that do not have a strong color cast.
Compensating for the global illumination first removes the
color cast and aids the prior in identifying the distance-
dependent effects better. Therefore, we conduct a simple
global white balance by dividing the pixel values by the
maximum in each channel at the beginning of the process.
Then, from now on we assume the global color cast has
been removed, i.e., Ec = 1, and concentrate on recovering
the local distance-dependent effects.

3.2 Underwater Haze-Lines Prior-Based Method

The haze-lines prior [33] assumes that the colors in a clear
image can be clustered to a final set of clusters, and shows
that in hazy images these clusters become lines (termed haze
lines) in RGB space in the form:

I(x)−V = t(x) [J(x)−V] , (5)

where in haze t is assumed to be uniform for all color
channels, where I,J,v are spectral R,G,B vectors. Based
on this observation they suggested a dehazing method that
clusters the colors into lines after first estimating V. The
transmission per pixel is estimated from the value distribu-
tion along each haze-line.

Berman et al. [34] proposed a single image restoration
of underwater scenes based on the haze lines prior. They
showed that if the two global attenuation ratios [βBR, βBG]
are known, then Eq. (1) can be rewritten similarly to Eq. (5)(IR(x)− VR)βBR

(IG(x)− VG)βBG

(IB(x)− VB)

 = tB(x) ·

(JR(x)− VR)βBR

(JG(x)− VG)βBG

(JB(x)− VB)

 . (6)

The form of Eq. (6) matches the image formation model
for haze. Then, the haze-line prior [33] can be applied to



estimate tB . Once tB is evaluated, the image can be restored
according to Eq. (6),

Jc(x) =
Ic(x)− Vc
tB(x)βc/βB

+ Vc . (7)

In [34] [βRB , βGB ] were automatically chosen from a fixed
set of options, that limited accuracy. In the following we
show how to estimate them without aprioi knowledge.

4 PROPOSED METHOD

Given a linear underwater image we wish to restore the
underlying scene to its true colors, i.e., as if there were no
water between the camera and the scene. Based on Sec. 3
this requires estimation of the attenuation coefficients ratios
[βBR, βBG] and the veiling light [VR, VG, VB ]. The results
of all prior-based methods are very sensitive to these values
and therefore our method focuses on their robust estimation.
Once they are estimated any prior can in theory be used for
restoration. We use the haze-lines prior for recovery as its
code easily adapts to our changes.

Our method is illustrated in Fig. 3 and summarized
in Alg. 1. The code is available at: https://github.com/
yaelbekerman/Unveiling-Optical-Properties.git. Next, we
detail each stage.

Algorithm 1 Image Color Restoration

Input I(x) - linear image
Output J(x) - restored image, t(x) - estimated transmission

1: Compensate for ambient illumination color
∀c ∈ {R,G,B}

2: Identify a textureless background area for initial veiling
light estimation V and feasible range.

3: Calculate attenuation coefficients’ ratios [βBR, βBG] ac-
cording to V using Eq. (8).

4: Find pixels with known ground-truth using a contrast
enhanced image.

5: Solve for V using the GT pixels with Eq. (6) by nonlinear
least-squares curve fitting minimization.

6: Calculate [βBR, βBG] using V.
7: Use Haze-Lines prior Eq. (7), with small modifications,

to estimate an initial transmission tB .
8: Regularize transmission using constrained WLS with

lower bound constrains.
9: Calculate the restored image using Eq. (7).

10: Convert the restored linear image to sRGB image.

4.1 Estimating Ratios of Attenuation Coefficients

Contrary to previous methods [6], [22], [30], [32], [35] that
used fixed sets of water types the power of our approach
stems from estimating the attenuation coefficient ratios
βBR, βBG directly from the image. This is significantly more
accurate as it was shown in [44] that the coefficients depend
on the camera sensitivity and other factors, and therefore
using pre-defined values as done before results in errors.

Our approach (illustrated in Fig. 4) stems from Eq. (6).
It was shown in [34] that color clusters in a clear image
become curved lines in RGB space in underwater images
and that knowing βBR, βBG can ’straighten’ the curves.

Thus, we look for the βBR, βBG values that give the best
line approximation to the curves.

Mathematically, let us assume the veiling light V
is known (we later detail how we estimate it). Denote
L = ln |I−V|. Taking the log out of Eq. (6) and rewriting
it, shows that Lc=R,G is linearly related to LB ,

Lc = βBcLB + ln
|Jc − Vc|
|Jb − VB |βBc

. (8)

Interestingly, the slope of this line is the unknown βBc,
regardless of the object color Jc that only affects the line
intercept. We use this insight to estimate the coefficients
directly out of the image without any a-priori data.

We do it as follows. First, we scatter plot the values of
Lc=R,G vs. LB for all pixels in the image. Then we aim to
find the line slopes that best fit the image data (separately
for R and G). We consider the angles θ ∈ [20◦, 70◦]. This
range was chosen as it is physically feasible based on
oceanographic data. For each θ we rotate the data, then
divide the x axis into 500 bins. Each such bin represents a
line with angle θ in the original data. We count the number
of data points in each bin and average the top 10% bins with
largest values. This average yields a score for each angle and
the angle with the highest score is chosen separately in each
of the BG,BR planes.

As can be seen in the results, this estimation yields
robustness and the ability to better cope with farther objects.
The algorithm steps are summarized in Alg. 2.

Algorithm 2 Attenuation Coefficients’ Ratios Estimation

Input I(x) - linear image, V - veiling light
Output [βBR, βBG] - attenuation coefficients’ ratios

1: for c = R,G do
2: for V ∈ ΩV do
3: for each θ ∈ [20◦, 70◦], (u, v) ∈ (Lc, LB) do

4:

[
u′

v′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
×
[
u
v

]
5: divide values of u’ into 500 bins
6: bin val = count in each bin
7: θscore = mean(max 10%(bin val))

8: β̃Bc[V ] = tan(argmax
θ

(θscore))

9: βBc = median(βBc)

Implementation details. We assume that for small changes
of the veiling light, the attenuation coefficients should
not change. Therefore, in order to gain stability, we
run this algorithm several times for values around V,
ΩV = {[Vc − 0.01 : 0.01 : Vc + 0.01]} and get resulting co-
efficients ΩβcB

. We run the same algorithm on the GR
plane and choose βBR, βBG from ΩβcB

that minimize
‖βBR/βBG − βGR‖.

4.2 Veiling-Light Estimation
Estimating the veiling light correctly is important for solving
the underwater image formation equation for any dehazing
method. The image formation model Eq. (1) assumes a
global veiling light for the entire image. However, very
often this is not true– the sun is illuminating from an angle,
etc. Therefore, methods that find the veiling light using



Fig. 3: The flow of our method.

Fig. 4: Estimating attenuation coefficients. [Top] Data dis-
tribution in the [ln(IB − VB), ln(IG − VG)] plane from
image R3272, rotated by 3 different angles (20◦, 40◦, 60◦).
[Center] Number of data points for each x-axis value. [Bot-
tom] The calculated score. The angle of θ = 40◦ receives the
maximum score and therefore βBG is set to tan(40◦) = 0.84.

background pixels from the scene are prone to instabilities.
Moreover, due to low visibility, the background detection is
sometimes erroneous (examples in Fig. 5), inserting errors
into the process. To overcome these issues, we propose to
find the veiling-light value that best fits the image formation
model based on the given image.

We do this using the insight that a simple contrast stretch
recovers the colors of the nearby pixels. These pixels are
then used as pixels for which J is known. Using their values
in Eq. (1) we find the missing V value using a nonlinear
data-fitting minimization.

Finding Pixels with Known Ground-Truth. We per-
form a global contrast enhancement on the input image
∀c ∈ {R,G,B}:

Ic(x) =
Ic(x)−min(Ic)

max(Ic)−min(Ic)
. (9)

Next we take the bottom third of the contrast-enhanced

Fig. 5: Weak contrast in further areas sometimes results
in errors when estimating veiling-light from a textureless
background (indicated in blue). Note the wreck’s bridge that
was mistakenly marked as background (left) as well as the
large sand area (right).

image, where we assume it is most likely to have nearby
objects and cluster the image to P clusters according to
intensity levels. For each cluster, each cluster center pixel
x̂ contributes a data pair for the minimization [I(x̂),J(x̂)].

Initial Guess And Boundary Conditions. Initial guess and
boundary conditions are required for the two unknowns
vectors - the veiling light V and the transmission for each
cluster center tB . Note that tB is solved for in the optimiza-
tion but this value is not used afterwards.

The initial estimation for V is done by searching in the
upper area of the image for a smooth area, without objects
or texture, similarly to [34]. The pixels in this area are sorted
according to their intensity. The pixel with the mean inten-
sity provides the initial V, the pixel at the 80% percentile the
upper bound Vub, and the pixel at the 20% percentile the
lower bound Vlb. We use this guess to calculate βBR, βBG as
explained in Sec. 4.1. For the transmissions the initial guess
is set to be 0.9 as these are nearby objects, and the lower and
upper bounds are set to be 0.7 and 1, respectively.

Final Veiling Light Estimation. We solve the follow-
ing nonlinear least-squares problem with lower and upper
bounds using an iterative curve fitting minimization opti-
mization solver based on trust regions method [47],

min
V,tB

P∑
p=1

∑
c=

R,G,B

{
βBc · ln

[
Vc − Ic(p)
VB − JB(i)

]
− ln (tB(p))

}2

(10)

s.t. Vlb 6 V 6 Vub

0.7 6 tB 6 1



In each iteration V is used for calculating βBR, βBG ac-
cording to Sec. 4.1 and they are used for calculating the error.
The resulting V is used to calculate the final βBG, βBR and
together they are used for transmission estimation detailed
next. The resulting values for tB from Eq. (10) are ignored
but when we examined them they were consistent with the
assumptions.

4.3 Transmission Estimation and Regularization
We estimate the transmission based on the haze-line prior as
described in [33], [34]. The estimated per-pixel transmission
has to be regularized to enforce smoothness and overcome
noise.

Contrary to Berman et al. [34] we use a constrained
weighted linear least-squares problem using an interior-
point method [48]. We set a lower bound on the transmis-
sion that stems from the constraint Jc ≥ 0. In our experience
this optimization together with the lower bound reduced
artifacts and improved results.Since this optimization adds
constraints per pixel, its run time is increased. To overcome
this issue we down-sample the transmission map and iter-
atively up-sample it back, using the intensity guided depth
up-sampling method in [49].

Finally, we convert the linear image to sRGB using a
standard image processing pipeline [50].

5 EXPERIMENTAL RESULTS

5.1 Datasets
We tested our algorithm on several datasets:
1. The dataset presented in [51] (available online [52]). This
dataset contains 57 stereo images from four dive sites named
Nachsholim,Michmoret (rocky reefs), Satil (a deep wreck) and
Katzaa (coral reef). All the images are linear and were taken
under natural light. The dataset enables a quantitative eval-
uation of restoration algorithms on natural images. For color
comparison, color charts were placed at different distances
from the camera. For transmission evaluation, ground truth
distance maps were created using stereo imaging. Note that
we used the stereo images and color charts for evaluation
only. Our algorithm input was a single image with masked
color charts.
2. Li et al. [53] collected 3800 underwater images from the
internet and randomly selected 30 underwater images from
their collected dataset for comparison.
3. Li et al. [15] collected 950 images from the internet,
with different sizes and quality. They provide corresponding
high-quality reference images to 890 images. The reference
image was chosen from results of 12 different underwa-
ter image enhancement methods by 50 volunteers who
performed pairwise comparisons among the 12 enhanced
results.

Note that datasets 2 and 3 do not provide linear images
required by our method. Yet, we are not aware of linear
datasets other than 1 and use them to test our method on a
variety of images.

5.2 Evaluated Methods
We set to conduct an extensive comparison of our method
with most recent methods. For Li et al. [29] (MILP 2016)

and Berman et al. [34] (UWHL 2017) we used official code
provided online. Wang et al. [2] published code online for
Li et al. [23] (GB UDCP 2016) and Song et al. [30] (ULAP
2018). Some authors sent us code in a private correspon-
dence: Peng et al. [27], [32] (IBLA 2017, GDCP 2018), Wang et
al. [35] (curve prior 2017) and Gao et al. [11] (local fusion
2019). Finally several authors sent us results on a subset of
images through a private correspondence: Ancuti et al. [8],
[9], [10] and Emberton et al. [25] .

Anwar and Li [4] conducted a comprehensive survey of
latest deep underwater image enhancement networks [4],
[15], [16], [17], [37], [53], tested on dataset 1 [51]. They con-
cluded that in most cases, the deep learning-based methods
fall behind state-of-the-art conventional methods as [34].
Therefore, we leave the reviewed methods in [4] out of the
comparison here.

5.3 Qualitative Evaluations
Dataset 1. Fig. 6 presents a comparison on several images of
methods we found are best performing, including zoom-ins
to farther parts. A comparison of additional methods is pre-
sented in the supplementary. It can be seen that our results
have better color and contrast than the others, including in
farther parts as seen in the zoom-ins. The global contrast
stretch gives overall visually pleasing results but as it is a
global operation it does not recover distant areas (e.g. zoom-
ins in #R3008, #R3204). Results of Ancuti et al. [10] are very
detailed but with a color bias. This method also amplified
the noise, especially in deep images with low signal (e.g.,
#R4388 zoom-in). Gao et al. [11] yields consistent decent
results throughout the dataset but they tend to be grayish
and over-saturated. This method also amplifies noise in dark
areas (e.g, red artifacts in the deep dataset, bottom right of
images #R4388, #R4366). Wang et al. [35] uses a fix set of
βBR, βBG and therefore suffers from severe color skews.
Berman et al. [34] choose βBR, βBG from a fixed set of 10
options which also results in color skew in #R4388 and
pink halo in the farther areas in images #R3204, #R5478. All
methods suffer from artifacts in dark places, as can be seen
on the rocks and in #R4481 zoom-in. Our method avoids
these artifacts, corrects the colors and recovers far objects.
Datasets 2 and 3. Our results on these datasets are presented
in Figs. 7 and 8. These datasets are less suitable for our
method as they do not provide linear images and not all im-
ages comply with our assumptions of ambient illumination
in horizontal angle. Nevertheless, in dataset 2 our method
still outperforms the best-ranking method presented in [53].
In dataset 3 in scenes under ambient illumination our results
significantly improve on the reference image, especially in
areas that are farther away from the camera.

5.4 Quantitative Evaluations
It is difficult to quantitatively evaluate underwater natural
images. Unlike atmospheric dehazing, where natural image
taken on a clear day can be ground truth to an hazy image
taken on a foggy day, underwater images do not have a clear
ground truth.

Some works use underwater image quality measures
such as UCIQE and UIQM for evaluation. However, it
was shown in Li et al. [53], that these measures sometimes
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Fig. 6: Comparison of single-image underwater latest methods, with focus on interesting areas. Overall, the appearance
of our results is the best, and especially in further areas, as seen at the bottom half of the page. Please zoom-in for better
evaluation.
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Fig. 7: Results on several images from dataset 2 [53]. Our results are compared to the results by [53], claimed to be best
performing on this dataset. Our results have better color and contrast. Please zoom-in for better evaluation.

TABLE 1: Mean reproduction angular error Ψ of the gray patches in the color charts. Lower is better. Missing entries are
due to the fact that the corresponding authors sent us results on specific images and not on the entire dataset.

Image R3008 R5478 R4336 R3204 R4485 Nachsholim Satil Katzaa Michmort All

Contrast 10.88 2.88 6.54 10.54 7.88 11.47 7.20 8.14 4.88 7.57
Li 2016 [29] 12.20 17.12 29.00 10.62 14.46 11.77 29.13 19.19 18.62 18.68
Li 2016 [23] 17.00 21.64 35.31 22.76 28.06 23.58 35.15 28.48 26.39 27.53

Ancuti 2016 [8] 6.29 13.06 10.27 4.76 13.70
Peng 2017 [32] 9.66 27.04 35.58 22.05 33.31 18.39 36.03 32.50 29.01 28.49
Peng 2018 [27] 14.97 26.66 35.68 24.44 34.66 22.89 35.78 33.27 32.01 30.79
Song 2018 [30] 16.83 32.08 36.04 28.88 37.26 22.30 36.44 35.42 30.84 30.88
Ancuti 2017 [9] 4.58 9.65 6.36 6.22 4.09
Ancuti 2018 [10] 5.20 5.44 8.65 4.63 6.90

Emberton 2018 [25] 6.70 36.15 35.75 8.61 36.40
Wang 2018 [35] 10.20 23.46 35.47 26.45 36.82 16.84 35.90 35.28 26.70 28.00
Gao 2019 [11] 2.78 6.21 6.73 3.99 4.71 4.38 6.10 8.10 8.50 7.12

Berman 2017 [34] 4.68 4.75 33.47 2.73 9.40 7.28 25.48 8.88 6.68 10.03
Ours 2.40 4.47 8.41 2.56 2.51 4.22 11.27 7.07 4.66 6.12

give higher scores to results that are clearly wrong in the
color (e.g., totally red). This happens as they are biased to
specific image enhancement characteristics and do not take
color shift and artifacts into account. Therefore, we use the
quantitative evaluation on the ground truth measurements
presented in [51], evaluation of color restoration on the color
cards and evaluation of the transmission map vs. the stereo
ground-truth.

The numerical evaluations are shown for each image that
was presented visually in Fig. 6 and we also provide mean
scores on the entire dataset, separated per dive site.

5.4.1 Image Restoration Measures
Color correction evaluation. To eliminate the influence of
the global illumination, a median angle between the gray-
scale patches and a pure gray color in sRGB space were
calculated. We calculated the mean reproduction angular
error Ψ on all the color charts in the image. The result is

in degrees and lower angles indicate a more accurate color
restoration. The sRGB space was used as most previous
methods (except of [34]) output images in this space.

The results are summarized in Table 1. Some image
enhancement methods [9]- [11] yield relatively low errors.
Most physics-based methods yield very high errors, except
of our method that has the lowest errors in 3 out of 4 dive
sites and overall. Errors calculated on the color patches of
the color charts and on just the farthest chart show a very
similar trend, presented in the supplementary.
Transmission. The Pearson correlation coefficient (ρ) is used
to calculate correlation between the ground-truth distance z
and the estimated transmission z̃ = − ln(tc) (Eq. 2)

ρ =
cov(z̃, z)

σz̃σz
, (11)

where cov is the covariance and σz̃, σz are the standard
deviations of z̃, z respectively. The correlation coefficient has



TABLE 2: Pearson Correlation ρ: depth vs. -ln(transmission) calculated using Eq. (11). Missing entries are due to the fact
that the corresponding authors sent us results on specific images and not on the entire dataset. As these are from the least
performing methods this lack does not influence the evaluation.

Image R3008 R4388 R5478 R4336 R3204 R4481 R4485 Nachsholim Satil Katzaa Michmoret All

Li 2016 [23] 0.36 0.51 -0.17 0.57 -0.08 0.07 0.37 0.31 0.35 0.19 -0.30 0.06
Ancuti 2016 [8] 0.08 0.12 -0.36 -0.22 -0.19 -0.03 -0.05
Peng 2017 [32] 0.75 0.55 0.82 0.66 0.81 0.68 0.78 0.82 0.48 0.72 0.87 0.76
Peng 2018 [27] 0.11 0.43 -0.28 0.34 0.02 0.54 0.63 0.30 0.32 0.40 0.31 0.33
Song 2018 [30] 0.93 0.55 0.70 0.46 0.94 0.65 0.82 0.90 0.29 0.72 0.60 0.66

Emberton 2018 [25] -0.17 0.28 -0.50 -0.42 -0.14 -0.47 0.13
Berman 2017 [34] 0.78 0.50 0.64 0.49 0.86 0.09 0.73 0.84 0.37 0.66 0.73 0.68

Ours 0.94 0.56 0.82 0.73 0.90 0.14 0.82 0.84 0.60 0.63 0.77 0.72
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Fig. 8: Results on several images from dataset 3 [15]. Our re-
sults are compared to the results that were selected the best
among 50 volunteers. Our results present better contrast and
color, especially in areas that are further away. Please zoom-
in for better evaluation.

a value between −1 (opposite correlation) and +1 (perfect
correlation).

The numerical results are presented in Table 2 and some
scaled depth maps are shown in Fig. 9. It can be seen that
our method yields a very good depth estimation, within
the top 2 methods. In the challenging deep water dive site
(the Satil dataset), where the colors in images are highly
distorted, our method best restored the transmissions.

The prior-based methods that received the highest scores
in depth estimation [30], [32], fail short in the color color
correction evaluation (image results presented in the sup-
plementary). We suspect this is because they used wrong
values or image formation model for water properties.

5.5 Veiling light Estimation

As we do not have ground truth for V, to assess its
accuracy we examine whether the results are consistent,
i.e., we expect to see clustering of the values according to
dive site. Fig. 11 scatter plots the estimated veiling light
V for each image in the dataset, colored by dive site. The
values were normalized by intensity (VR + VG + VB) to
ignore illumination changes and compare color. As can be

seen in the graph, the values are approximately clustered
with a linear discriminant analysis (LDA) score of 84.2%,
demonstrating consistency of the estimation.

Now we examine the effect of the veiling light refine-
ment stage in Eq. 10. The top row in Table 3 summarizes
the ρ and Ψ score differences on dataset 1 when the refine-
ment part is omitted, i.e., the initial guess is used as the
veiling-light, similarly to previous methods. The refinement
improves performance for most cases and without it the
LDA score drops to 77.4%. Fig. 10 depicts an example. In
this image the illumination is not uniform and therefore
estimating V directly out of the image results in a bad
transmission map and less correction of the farther parts
(see for example the 3 top windows of the wreck). After the
refinement stage the transmission is greatly improved, as
well as the correction.

To examine the robustness of the veiling light step, we
conducted a test where we perturbed the initial veiling
light estimation to the lower and upper bounds Vlb,Vub of
Eq. (10) that were often extremely different than the initial
estimate. The lower and upper bounds were chosen as the
minimum and maximum values in the entire background
area and are often very dark (Vlb) or very bright (Vub). With
these values as an initial input the optimization in Eq. (10)
did not converge to exactly the same veiling-light value, but
the overall reconstruction results were very reasonable, as
can be seen in Table 3.

5.6 Effect of White-Balancing in Pre-Processing
Here we demonstrate the effect of white-balancing the im-
age before processing rather than at its end. The middle
row in Table 3 summarizes the ρ and Ψ score differences
on dataset 1 of our method when the white-balance is
conducted as post-processing instead, as is often done. It can
be seen that this seemingly innocent change has a significant
positive effect on the results. Fig. 12 demonstrates this effect
in a couple of examples.

To showcase the strength of our method we also tested
the performance of Berman et al. [34] when its input was our
white-balanced image (Table 3). Our results are much better
and more robust, showing the effect of our method does not
stem only from the pre-processing step.

6 CONCLUSIONS

Physics-based single image restoration methods require a
good prior to recover a clean image, as well as an accurate
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Fig. 9: Results of scaled depth estimation by the best performing methods.

TABLE 3: An ablation study of our method. The average transmission score ρ Eq. (11) and the scene restoration score Ψ are
calculated per dive site for several variants of our method. First, using the initial estimation based on background pixels
as veiling-light. Second and third, using lower and upper bounds as initial estimation for Eq. (10). Forth, white balancing
the image in post-processing instead of pre-processing. Fifth, Berman et al. [34] with our pre-processed image as an input.

Method variant/Dive site Nachsholim Satil Katzaa Michmoret All

ρ Ψ ρ Ψ ρ Ψ ρ Ψ ρ Ψ

No veiling light refinement 0.84 4.41 0.52 12.42 0.63 8.12 0.71 5.17 0.69 6.79
Vlb as initial guess for Eq. (10) 0.83 4.45 0.54 11.40 0.63 8.73 0.71 4.94 0.69 6.73
Vub as initial guess for Eq. (10) 0.81 5.51 0.44 12.01 0.66 8.83 0.69 4.98 0.67 7.10

WB in post-processing 0.82 4.82 0.47 15.56 0.59 8.33 0.72 5.94 0.69 7.66
[34] with WB in pre-processing 0.81 8.72 0.41 14.37 0.53 8.00 0.70 6.06 0.64 8.35

Ours (full) 0.84 4.22 0.60 11.27 0.63 7.07 0.77 4.66 0.72 6.12

estimation of the water optical parameters. While there has
been a considerable amount of work on new priors and
methods for underwater image restoration, there has been
much less work on estimating the water attenuation prop-
erties from single images. Most methods simply assumed
fixed or preset attenuation values, which limited their ability
to recover scene properties.

We are the first, to the best of our knowledge, to
demonstrate a single image method to robustly estimate
attenuation parameters from the image itself, as well as
the veiling-light. It was shown in [1], [44] that it is not
possible to directly use attenuation coefficients from Jerlov’s
water types in broadband images. The Jerlov coefficients
are measured per wavelength and their manifestation in
broadband images depends on many factors such as object
distance, reflectance, etc. Therefore, the βc coefficients in

Eq. (2) are not physical parameters and it is difficult to
evaluate their recovery compared to the Jerlov water types.
This is why our method has a major advantage compared
to all previous methods- methods that are based on using
specific values from the Jerlov water types have an inherent
limit of accuracy as these numbers are usually not the actual
numbers that should be used. The power of our method is
that it finds the coefficients that explain the imaged scene
in the best way without using preset values. It also should
be noted that the veiling light value that we estimate best
fits the scene and does not rely on finding background pixel
values.

We then use the recovered attenuation parameters and
veiling light with an existing image restoration algorithm
and witness a considerable improvement in the quality of
the results. We further conducted a rigorous evaluation on



Fig. 10: The effect of the veiling light refinement (Eq. (10)),
demonstrated on #R4336. [Right] Our method’s results
without the refinement. [Left] Results of our full pipeline.
Transmission maps are at the top and restored scenes at
the bottom, where the insert depicts the estimated V. The
refinement greatly improves the tranmission estimation and
as a result the restored scene.

Fig. 11: Estimated veiling light V/(VR + VG + VB) for each
image, colored according to dive site to show consistency.
Results show decent clustering, with an LDA score of 84.2%.

several datasets and show that our method performs the
best in terms of scene restoration.

The parameter estimation method presented in this pa-
per is independent of the restoration algorithm and can be
used with other physics based image restoration algorithms.
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